- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chu, R (2)
-
Endeve, E (2)
-
Hauck, C (2)
-
Mezzacappa, A (2)
-
Messer, B (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
thornado-transport: IMEX schemes for two-moment neutrino transport respecting Fermi-Dirac statisticsWe develop implicit-explicit (IMEX) schemes for neutrino transport in a background material in the context of a two-moment model that evolves the angular moments of a neutrino phase-space distribution function. Considering the upper and lower bounds that are introduced by Pauli’s exclusion principle on the moments, an algebraic moment closure based on Fermi-Dirac statistics and a convex-invariant time integrator both are demanded. A finite-volume/first-order discontinuous Galerkin(DG) method is used to illustrate how an algebraic moment closure based on Fermi-Dirac statistics is needed to satisfy the bounds. Several algebraic closures are compared with these bounds in mind, and the Cernohorsky and Bludman closure, which satisfies the bounds, is chosen for our IMEX schemes. For the convex-invariant time integrator, two IMEX schemes named PD-ARS have been proposed. PD-ARS denotes a convex-invariant IMEX Runge-Kutta scheme that is high-order accurate in the streaming limit, and works well in the diffusion limit. Our two PD-ARS schemes use second- and third-order, explicit, strong-stability-preserving Runge-Kutta methods as their explicit part, respectively, and therefore are second- and third-order accurate in the streaming limit, respectively. The accuracy and convex-invariance of our PD-ARS schemes are demonstrated in the numerical tests with a third-order DG method for spatial discretization and a simple Lax-Friedrichs flux. The method has been implemented in our high-order neutrino-radiation hydrodynamics (thornado) toolkit. We show preliminary results employing tabulated neutrino opacities.more » « less
-
Chu, R; Endeve, E; Hauck, C; Mezzacappa, A (, Journal of computational physics)Building on the framework of Zhang & Shu [1,2], we develop a realizability-preserving method to simulate the transport of particles (fermions) through a background material using a two-moment model that evolves the angular moments of a phase space distribution function f. The two-moment model is closed using algebraic moment closures; e.g., as proposed by Cernohorsky & Bludman [3] and Banach & Larecki [4]. Variations of this model have recently been used to simulate neutrino transport in nuclear astrophysics applications, including core-collapse supernovae and compact binary mergers. We employ the discontinuous Galerkin (DG) method for spatial discretization (in part to capture the asymptotic diffusion limit of the model) combined with implicit-explicit (IMEX) time integration to stably bypass short timescales induced by frequent interactions between particles and the background. Appropriate care is taken to ensure the method preserves strict algebraic bounds on the evolved moments (particle density and flux) as dictated by Pauli’s exclusion principle, which demands a bounded distribution function (i.e., f ∈ [0, 1]). This realizability-preserving scheme combines a suitable CFL condition, a realizability- enforcing limiter, a closure procedure based on Fermi-Dirac statistics, and an IMEX scheme whose stages can be written as a convex combination of forward Euler steps combined with a backward Euler step. The IMEX scheme is formally only first-order accurate, but works well in the diffusion limit, and — without interactions with the background — reduces to the optimal second-order strong stability-preserving explicit Runge-Kutta scheme of Shu & Osher [5]. Numerical results demonstrate the realizability-preserving properties of the scheme. We also demonstrate that the use of algebraic moment closures not based on Fermi-Dirac statistics can lead to unphysical moments in the context of fermion transport.more » « less
An official website of the United States government

Full Text Available